Quick Start
Quick Start
Installation
You may install OpenMOA library by pip
pip install openmoa
The First Example
Run an end-to-end streaming-anomaly detection experiment on a synthetically drifting feature space.
Python
import openmoa as om
from openmoa.dataset import stream_loader
from openmoa.preprocess import adaptive_standardize
from openmoa.model import SparseActiveOL # IJCAI'25
from openmoa.eval import run
- create a streaming loader whose feature space grows/shrinks on-the-fly
ds = stream_loader(name='synthetic_open',
n_samples=1_000_000,
feature_pace=500, # new feature appears every 500 steps
anomaly_ratio=0.05)
- plug in the online learner
learner = SparseActiveOL(
alpha=0.01, # sparsity regularizer (ℓ1,∞ mixed norm, SDM'24)
budget=50, # active query budget
window=1000 # sliding window size
)
- run & collect results
run(
stream=ds,
preprocess=adaptive_standardize,
learner=learner,
metrics=['AUC', 'F1', 'N_features'],
output=['csv', 'fig', 'animation'],
checkpoint_every=10000
)